 |
 |
 |
 |
 |
 |
|
 |

 |
|
Closed form À̶õ ¿¹¸¦ µé¸é,
1+x+x^2 + x^3 +x^4 +..... = 1/(1-x) ÀÌ·±½ÄÀ¸·Î °£´ÜÇÑ ¿¬»ê½ÄÀ¸·Î ³ªÅ¸³»´Â °ÍÀÔ´Ï´Ù.
--------------------------------------------
2008³â 8¿ù 7ÀÏ ¸ñ¿äÀÏ
ÄöÆ®´Â ¿Ö Closed Form ÇØ¸¦ ¼±È£Çϳª?
Closed Form ÇØ´Â ÇØ¼®Àû(analytic)À¸·Î Ç®À̰¡ °¡´ÉÇÑ ÇØÀÌ´Ù. ´ëÇ¥ÀûÀÎ ¿¹°¡ À¯·´Çü ¿É¼ÇÀÇ ºí·¢ ¼ñÁî ¹ÌºÐ¹æÁ¤½ÄÀÌ´Ù. ÄöÆ®µéÀÌ ¸ðµ¨À» ¼±ÅÃÇÒ ¶§´Â ´ÙÀ½°ú °°Àº ¿©·¯ °¡Áö¸¦ °í·ÁÇÏ°Ô µÈ´Ù.
1) °ß°íÇϳÄ? : ±âÃÊÀÚ»ê(Underlying)ÀÇ ·£´ý ÇÁ·Î¼¼½º(Random Process)ÀÇ Á¶±×¸¸ º¯È°¡ ±×¸® Å« ¿µÇâÀ» ÁÖÁö ¾Ê¾Æ¾ß ÇÑ´Ù
2) ºü¸£³Ä? : °¡°Ý(Price)°ú ±×¸¯(Greeks)ÀÌ ºü¸£°Ô °è»êµÇ¾î¾ß ÇÑ´Ù. °æÀïÀÚ¿¡°Ô °è»ê¼Óµµ¿¡¼ Áö¸é °ï³ÇÑ ÀÏÀÌ µÈ´Ù. ½Ç½Ã°£ Çì¡¿¡¼µµ ¸ó´ÙÀÌ(Ùýð¹)°¡ ¹ß»ý...
3) Á¤È®ÇϳÄ? : °è»êµÈ °¡°ÝÀÌ ÁÁ¾Æ¾ß ÇÑ´Ù. °ú°ÅÀÇ °¡°Ý°ú Àß ¸Â¾Æ¾ß ÇÑ´Ù.
4) Á¶Á¤Çϱ⠽±³Ä? : ÀºÇàµéÀº °£´ÜÇÑ °è¾àÀÇ °Å·¡µÈ °¡°Ý°ú ¸Â´Â °ÍÀ» ¼±È£ÇÑ´Ù.
°úÇа迡¼ ¿Â ÄöÆ® ÀÔÀåÀ¸·Î º¸¸é 3) Á¤È®Çϳİ¡ °¡Àå Áß¿äÇϰí 2) ºü¸£³Ä°¡ °¡Àå ¾È Áß¿äÇÏ°Ô ´À²¸Áö°í, ±×·¸°Ô ÈÆ·Ã¹Þ¾Æ ¿Ô´Ù. ¼öÇаúÀÇ °æ¿ì ÇÑ ¹®±¸¸¸ ºÎÁ¤È®Çصµ ³í¹®ÀÌ ºü²ÙµÇ¾î ÀλýÀÌ »ß²ÙµÇ´Â ¼±ÈĹè, µ¿±â¸¦ ¸¹ÀÌ ¸ñ°ÝÇß´ø °ÍÀÌ´Ù.
±ÝÀ¶°è ½Ç¹«Áø¿¡°Ô´Â 2) ºü¸£³Ä°¡ Áß¿äÇÑ °ü°ÇÀÌ´Ù. °Å·¡¸¦ »¡¸® Çϰí À§Çè°ü¸®¸¦ À§ÇؼÀÌ´Ù.
±×·¡¼ °úÇÐÀÚÀÇ ÆÄ»ýº¯Á¾(?)ÀÎ ÄöÆ®¿Í ½Ç¹«ÁøÀº °Ç°ÇÀÌ ºÎµúÈ÷°Ô µÇ´Âµ¥ ÃÖÁ¾ ½ÂÀÚ´Â ´ë°³ ½Ç¹«ÁøÀÌ´Ù.
Closed Form ÇØ°¡ °¡Àå ºü¸£°í ¼öÄ¡ÇØ¼®ÀûÀÎ ¹æ¹ýº¸´Ù Á÷°üÀûÀ¸·Î ÀÌÇØÇϱ⠽±±â ¶§¹®¿¡ ³Î¸® ¾Ö¿ëµÇ´Â °ÍÀÌ´Ù.
====================================================================
¡°Closed formula¡± redirects here. For "closed formula" in the sense of a logic formula with no free variables, see Sentence (mathematical logic).
In mathematics, an expression is said to be a closed-form expression if, and only if, it can be expressed analytically in terms of a bounded number of certain "well-known" functions. Typically, these well-known functions are defined to be elementary functions – constants, one variable x, elementary operations of arithmetic (+ – ¡¿ ¡À), nth roots, exponent and logarithm (which thus also include trigonometric functions and inverse trigonometric functions).
By contrast, infinite series, integrals, limits, and continued fractions are not permitted. Indeed, by the Stone–Weierstrass theorem, any continuous function on the unit interval can be expressed as a limit of polynomials, so any class of functions containing the polynomials and closed under limits will necessarily include all continuous functions.
Similarly, an equation or system of equations is said to have a closed-form solution if, and only if, at least one solution can be expressed as a closed-form expression. There is a subtle distinction between a "closed-form function" and a "closed-form number" in the discussion of a "closed-form solution", discussed in (Chow 1999) and below.
An area of study in mathematics is proving that no closed-form expression exists, which is referred to broadly as "Galois theory", based on the central example of closed-form solutions to polynomials.
In physics and engineering the usual terminology is "analytical solution", a solution found by evaluating functions and solving equations; systems too complex for analytical solutions can often be analysed by mathematical modelling and computer simulation.
|
|
|
copyright ¨Ï 2005 ZIP365.COM All rights reserved |
|